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2 ◾ Wireless Sensor Networks

1.1  Introduction
A wireless sensor network (WSN) consists of a set of sensor devices that are spread over a geo-
graphical area [1]. These sensors are able to perform processing as well as sensing and are addition-
ally capable of communicating with each other. Due to the wide range of its potential applications, 
such as in the battlefield, emergency relief, environment monitoring, and so on, sensor networking 
has recently emerged as a premier research topic. For WSNs, the ultimate goal is often to collect 
sensing data from all sensors to certain sink nodes and then perform further analyses at these sink 
nodes. Thus, data collection is one of the most common services used in sensor network applica-
tions. Figure 1.1 shows an example of the data collection process in a WSN, in which a single sink 
node s at the center collects sensing values from every sensor using a collection tree.

The performance of data collection in sensor networks can be characterized by the rate at 
which sensing data can be collected and transmitted to sink nodes. In particular, theoretical mea-
sures that capture the possibilities and limitations of collection processing in sensor networks are 
the delay and capacity for many-to-one data collection. The delay of data collection is the time to 
transmit one single snapshot to sinks from its generation at sensors. Considering the size of data 
in the snapshot, we can define delay rate as the ratio between the data size and the delay. Clearly, a 
large delay rate is desired. When multiple snapshots from sensors are generated continuously, data 
transport can be pipelined in the sense that further snapshots may begin to transport before sinks 
receive the prior snapshot. The maximum data rate at the sinks to continuously receive snapshot 
data from sensors is defined as the capacity of data collection. Note that the capacity is always 
larger than or equal to the delay rate. Both delay rate and capacity reflect how fast the sinks can 
collect sensing data from all sensors. It is critical to understand the limitations of many-to-one 
information flows and devise efficient data collection algorithms to maximize the performance of 
WSNs. In this chapter, we are particularly interested in how the delay rate and capacity of data 
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Figure 1.1 Data collection in a WSN with a single sink s.
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collection vary in theory as the number of sensors increases. We will study some fundamental 
capacity problems arising from different types of data collection scenarios in WSNs. For each 
problem, we will introduce the asymptotic upper bound of transport capacity and present some 
efficient algorithms to achieve or approximate the upper bound.

1.1.1 Network Model
We focus on the theoretical capacity bound of data collection in WSNs. We consider a static 
sensor network, which includes n wireless sensor nodes V = {v1, v2,…, vn} and k sink nodes S = 
{s1, s2,…, sk} (when k = 1, we use s to denote the single sink). We assume that both sensor nodes 
and sink nodes are deployed in a two-dimensional square area. Two types of networks will 
be considered in this chapter: random networks and arbitrary networks (Figure 1.2 shows an 
example for each case). In random networks, sensor nodes are uniformly and randomly deployed 
in the area. Usually, under this model, the number of sensor nodes in the network is assumed to 
be very large. Such an assumption is useful to simplify the analysis and derive nice theoretical 
limits. Thus, the random network model has been widely used in the community for analyzing 
network performance. On the other hand, random networks may be invalid in many practical 
sensor applications in which the number of sensors is limited and the distribution of sensors is 
uneven inside the deployment region. In these cases, the arbitrary network model can be used. 
In arbitrary networks, sensors are deployed in any distribution and can form any network topol-
ogy. Obviously, this model is more general and the random network model is just a special case 
of it.

Throughout this chapter, we assume each sensor node transmits at a fixed transmission power 
P. Then, a fixed transmission range r can be defined such that a node vi can successfully receive the 
signal sent by node vj only if ||vi − vj|| ≤ r. Here, ||vi − vj|| is the Euclidean distance between vi and vj. 
We can further define a communication graph G = (V, E), where V is the set of all nodes (including 
the sink) and E is the set of all possible communication links. This graph model is called a disk 
graph model. We assume the communication graph G is connected.

At regular time intervals, each sensor node measures the field value at its position and trans-
mits the value to one of the sink nodes. We assume that the channel bandwidth for all wireless 
links is W bits per second. We also assume that all packets have the unit size of b bits. Time is 
divided into slots with t = b/W seconds. Accordingly, only one packet can be transmitted in each 
time slot between two neighboring nodes. Time division multiple access (TDMA) scheduling is 
used at the media access control (MAC) layer.

(a) (b)

Figure 1.2 A random network (a) versus an arbitrary network (b).
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1.1.2 Communication Model
Due to spatial separation, several sensors can successfully transmit at the same time if these trans-
missions do not cause any destructive wireless interference. There are three widely used commu-
nication models [2,3] to capture such interference constraints: the protocol model, the physical 
model, and the generalized physical model.

In the protocol model (also called protocol interference model), all nodes are assumed to have 
a uniform interference range R. When node vi transmits to node vj, node vj can receive the signal 
successfully if no other node within a distance R of vj is transmitting simultaneously. Figure 1.3 
illustrates an example of the protocol model in which the transmission between vk and vq will 
cause interference at vj. Usually, R/r is assumed as a constant α larger than 1. The protocol model 
is the simplest communication model considering the interference among nodes, and has been 
widely used in the literature. However, it is sometimes too simple to capture the complexity of 
interference.

In the physical model (also called physical interference model), node vj can correctly receive 
the signal from the sender vi if and only if, given a constant η > 0, the signal-to-noise ratio (SINR)
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Here, l(vi, vj) is the transmission loss between vi and vj, N0 > 0 is the background Gaussian noise, 
I is the set of actively transmitting nodes when node vi is transmitting, and P is the fixed transmission 
power. In this chapter, we consider the attenuation function l(vi, vj) = min{1,||vi − vj||−β} where β > 2 
is the path loss exponent and ||vi − vj|| is the Euclidean distance between vi and vj. Hereafter, we 
assume that all P, N0, β, and η are fixed constants. Notice that the values of P, N0, η, and transmis-

sion range r should satisfy P r
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For both the protocol model and the physical model, as long as the value of a given conditional 
expression (such as transmission distance or SINR value) reaches some threshold, the sender can 

vj
vi

vk

vq

R
r

Figure 1.3 In the protocol model, node vj can receive the signal successfully from vi if vi is 
within vj’s transmission range r, and no other transmitting node within a distance R of vj. In this 
example, vk’s transmission will cause interference at node vj.
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send data successfully to a receiver at a specific constant rate W due to the fixed rate channel model. 
However, the fixed rate channel model may not capture the feature of wireless communication well. 
As a result, a more realistic model, the generalized physical model (also called Gaussian channel 
model) is introduced. Such a model determines the rate under which the sender can send its data to 
the receiver reliably, based on a continuous function of the receiver’s SINR. Any two nodes vi and vj 
can establish a direct communication link vivj over a channel of bandwidth W, of rate
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This model assigns a more realistic transmission rate at a larger distance than the fixed rate 
channel models (protocol model and physical model). In this chapter, we will cover the data col-
lection in WSNs under all these communication models. Without specific notification, we use the 
protocol model as the default model in our analysis.

1.1.3 Capacity and Delay in Data Collection
We now formally define delay and capacity of data collection in WSNs. Recall that each sensor, 
at regular time intervals, generates an independent field value with b bits and wants to transport 
it to one of the sink nodes. The union of all sensing values from n sensors at a particular sampling 
time is called a snapshot of the sensing data. The task of data collection is to collect these snapshots 
from all sensors to sinks as quickly as possible.

Definition 1

The delay of data collection Δ is the time transpired between the time a snapshot is taken by the 
sensors and the time the sinks have all data of this snapshot.

Definition 2

The delay rate of data collection Γ is the ratio between the data size of one snapshot nb and the 
delay Δ.

It is clear that we prefer smaller delay and larger delay rate so that the sink can get each snapshot 
more quickly. On the other hand, the data transport can be pipelined in the sense that further snap-
shots may begin to transport before the sinks receive prior snapshots completely. Therefore, we need to 
define a new data rate of data collection under pipelining (sometimes called continuous data collection).

Definition 3

The usage rate of data collection U is the number of time slots needed at sinks between completely 
receiving one snapshot and completely receiving the next snapshot.
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Thus, the time used by sinks to successfully receive a snapshot is T = U × t. Notice that due 
to pipelining, T is always smaller than or equal to Δ. Clearly, small usage rate and T are desired.

Definition 4

The capacity of data collection C is the ratio between the size of data in one snapshot and the time 
to receive such a snapshot (i.e., nb/T ) at the sinks.

Thus, the capacity C is the maximum data rate at the sinks to continuously receive the snapshot 
data from sensors. Clearly, C is at least as large as the delay rate Γ, and is usually substantially larger.

In this chapter, we analyze the delay rate and capacity for data collection in both random 
and arbitrary WSNs under various communication models. Notice that in our definitions, we 
require data from every sensor to reach the sink in the same rate; thus, fairness among all sensors 
is guaranteed.

1.1.4 Related Works
Gupta and Kumar [4] initiated research on the capacity of wireless ad hoc networks by studying 
fundamental capacity limits in their seminal article under both protocol and physical models. The 
following articles studied capacity under different communication scenarios in wireless networks: 
unicast [5,6], multicast [7–9], and broadcast [10,11] capacities. In this chapter, we focus on the 
capacity of data collection, which is an all-to-one communication scenario different from the uni-
cast, multicast, and broadcast capacities.

The capacity of data collection in random WSNs has been previously studied [12–25]. In 
previous work by Duarte-Melo et al. [12,13], they first studied the many-to-one transport capac-
ity in random sensor networks under the protocol model and gave the results of overall capacity 
of data collection as Θ(W ). They also showed that compressing data is inefficient in improving 
capacity when the density of the sensor network increases to infinity [13]. El Gamal [14] studied 
data collection capacity subject to a total average transmitting power constraint. The assump-
tion that every node can only receive a packet from one source node at a time was relaxed, 
and it was shown that the capacity of random networks scales as Θ((log n) W ) when n goes to 
infinity and the total average power remains fixed. Their methods used antenna sharing and 
channel coding. Barton and Zheng [15,16] also investigated data collection capacity under more 
complex physical models [a noncooperative SINR model and a cooperative time reversal (CTR) 
communication model]. They first demonstrated that Θ((log n) W ) is optimal and achievable 
by using CTR for a regular grid network [15], then showed that the capacities of Θ((log n) W ) 
and Θ(W ) are optimal and achievable by CTR when operating in fading environments with 
power path-loss exponents that satisfy 2 < β < 4 and β ≥ 4 for random networks [16]. Liu et al. 
[17] recently introduced the capacity of a more general some-to-some communication paradigm 
in random networks where there are s(n) randomly selected sources and d(n) randomly selected 
destinations. They derived the upper and lower bounds for such a problem. Note that data 
collection is a special case for their problem when s(n) = n and d(n) = 1. Most recently, Ji et al. 
[18–21] also studied data collection methods in random WSNs under different communication 
models, such as dual-radio multichannel networks [18], asynchronous WSNs [20], or probabi-
listic network models [21].
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This chapter mainly covers the recent results from the author and his colleagues [22–27] on data 
collection capacity in both random and arbitrary WSNs. However, readers are encouraged to further 
read the references listed above to get the complete picture of capacity research in wireless networks.

The rest of the chapter is organized as follows. We first discuss the study on data collec-
tion capacity of random WSNs under various communication models and network scenarios in 
Section 1.2. We then consider the data collection capacity for an arbitrary WSN under different 
models. Finally, we conclude this chapter with a short summary in Section 1.4.

1.2 Data Collection in Random Sensor Networks
In this section, we focus on data collection in a large-scale random WSN and study how fast it can 
be performed under the existence of interference among sensors. We consider both cases with a single 
sink or multiple sinks under the protocol model, and also discuss the cases under physical models.

1.2.1 Preliminaries
We consider a random WSN in which n sensor nodes are randomly and uniformly deployed in a 
square area with side length l. Two types of random network models [28] can be defined: random 
dense network and random extended network. In the random dense network, sensors are uni-
formly deployed in a unit square area (l = 1). Thus, its node density is n. In the random extended 
network, sensors are uniformly deployed in a square region with l n= , thus its density is 1. In 
most of this chapter (except for Section 1.2.4), we use the random dense network.

We now introduce a classic grid-partition method that is essential for the proposed data collec-
tion methods and theoretical analysis. As shown in Figure 1.4, the network (e.g., the unit square) 
is divided into a2 micro cells of the size d × d. Here, a = 1/d. We assign each cell a coordinate (i,j), 
where i and j are between 1 and a, indicating its position at the jth row and ith column.

The following lemma gives a guidance of the cell size.

d

Sink node s

1 = 1

(a, a)(1, a)

(a, 1)(1, 1)

Figure 1.4 Grid partition of the WSN: a2 cells with a cell size of d × d.
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Lemma 1

Given n random nodes in a unit square [29], dividing the square into micro cells of the size 

3 3log logn
n

n
n

× , every micro cell is occupied with a probability of at least 1 1
2−

n
.

Therefore, if d n
n

= 3 log  (i.e., a n
n

=
3log

), every micro cell has at least one node with a 

high probability (the probability converges to one as n→∞).
We can also derive the upper bound of the number of nodes inside a single cell.

Lemma 2

Given n random nodes in a unit square [22,23], dividing the unit square into micro cells of the 

size 3 3log logn
n

n
n

× , the maximum number of nodes in any cell is O(log n) with a probability 

of at least 1 3− logn
n

.

The proof is straightforward from the following lemma when the number of balls γ = n and 
the number of bins δ = =a n

n
2

3log
. Lemma 2 indicates the number of nodes inside any cell is 

bounded from above by O(log n) with high probability.

Lemma 3

Randomly putting γ balls into δ bins [30], with a probability of at least 1 1−
δ

, the maximum 

number of balls in any bin is O γ
δ

δ+⎛
⎝⎜

⎞
⎠⎟log .

To make the whole network connected, the transmission range r needs to be equal to or larger 
than 5d  so that any two nodes from two neighboring cells are inside each other’s transmission 

range. Hereafter, we set r d n
n

= =5 15 log .

1.2.2 Data Collection with a Single Sink
In this subsection, we consider the simplest situation: data collection under the protocol model 
in a sensor network in which a single sink s is located in the upper right corner of the deployment 
region (i.e., cell (a,a) as shown in Figure 1.5). Notice that if the sink is located at the center of the 
region or anywhere in the region, it only adds a constant in the analysis. We first construct a data 
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collection scheme whose delay and delay rate are O(nt) and Ω(W ), respectively, and then prove 
that these values are order-optimal.

Our collection algorithm has two phases. In the first phase (phase I), every sensor sends its data 
up to the highest cell in its column (in the ath row) as shown in Figure 1.5a, and in the second 
phase (phase II), all data is sent via cells in the ath row to the sink as shown in Figure 1.5b. We 
define the time needed for these two phases as T1 and T2, respectively.

By Lemma 2, the number of nodes in each cell is at most O(log n). Every node needs one time 
slot t to send one packet to its neighbor in the next cell. However, due to wireless interference, 
when node vi transmits a packet to vj, nodes within R distance from vj cannot transmit any pack-

ets in the same time slot. Let L R
d

= +⎛
⎝⎜

⎞
⎠⎟

2 . Thus, every L × L cell (we call it an interference block 

hereafter) can only have one node send a packet to its upper neighbor in every time slot t during 
phase I. In Figure 1.5, bold lines show interference blocks. Remember that R

r
= α  and r

d
= 5, 

so 
R
d  and L are also constants, and a packet in the lowest row (i.e., cell (0,k)) has to walk a cells 

to reach nodes in the highest cell in the rectangle. Hence,

 
T L L t O n a O t n a O t n n

n
O t n1 3

≤ × × × × = = =(log ) ( log ) ( log )
log

log n( ).

In the beginning of phase II, all data are already at the cells of the top row. The sink s lies in 
the same row with these cells. We now estimate the time T2 needed for sending all data to s. Each 
cell in the top row has at most a × O(log n) nodes’ data and the interference block is now 1 × L. 
Similarly, we can get

 
T L t a O n a O t n a n

n
O t n O2

2

3
≤ × × × × = = =(log ) ( log )

log
( log ) (nnt ).

L

L

(a, a)

(1, 1)

(a)

L

L

(a, a)

(1, 1)

(b)

Figure 1.5 Our collection method: (a) every node sends its data to the upper cell in Phase I; 
(b) then each node in the top row sends its data to the cell to its right in Phase II.
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Therefore, the total time needed to collect b bits information from every sensor to the sink 
is T1 + T2 = O(nt). That is, the total delay Δ for the sink to receive a complete snapshot is at most 
O(nt). Consequently, the total delay rate of this collection scheme is

 
Γ Ω Ω= = ⎛

⎝⎜
⎞
⎠⎟

=nb nb
nt

W
∆

( ).

It has been proved that the upper bound of delay rate or capacity of data collection is W 
[12,13]. It is obvious that the sink cannot receive at a rate faster than W because W is the fixed 
transmission rate of an individual link. Therefore, the delay rate of our collection scheme achieves 
the order of the upper bound, and the delay rate of data collection is Θ(W  ). Notice that even for 
individual sensors, the lowest achievable delay rate of our method was Θ(W/n), which also meets 
the upper bound. In other words, our approach can achieve the order-optimal capacity for each 
individual sensor too.

Next, we consider the situation with pipelining. It is clear that the upper bound of capacity is 
still W. Because our scheme above already reaches the upper bound, the pipelining operation can 
only improve the capacity within a constant factor.

With pipelining, in phase I, the sensor can begin to transfer the data to its up-cell from next 
snapshot after sensors in its interference block finish their transmissions of previous snapshot. 
Whenever the cells in the top row receive a × b data (every cell in the top row receives a data from 
its lower cell), phase II can begin at the top row. We consider the improvements of pipelining on 
both phases. With the pipelining, the time ′T1  for the highest cell to receive a new set of a × b 
data in phase I is

 ′≤ × × × =T L L t O n O t n1 (log ) ( log )

And the time ′T2  for the sink to receive a new set of a × b data in phase II is

 ′ ≤ × × =T nt L t a O nt2 max{ , } ( ).

Therefore, the total time for sink to receive a × b data is ′+ ′ =T T O nt1 2 ( ). Thus, the capacity of 
our method with pipelining is still

 
C = ⋅

′+ ′
=a b

T T
W

1 2
Ω( ).

This also meets the upper bound W in order.
In summary, we have the following theorem:

Theorem 1

Under the protocol model [22,23], the delay rate Γ and the capacity C of data collection in random 
sensor networks with a single sink are both Θ(W ).
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Notice that the scheduling algorithm presented here is order-optimal but the constant behind 
the big Θ could be large. There are different methods (such as those used by Ji et al. [19]) that could 
further improve the achieved capacity by constant times.

1.2.3 Data Collection with Multiple Sinks
Now we consider networks with multiple sinks (e.g., k sinks). With more sinks, the collection 
task can be divided into small subtasks (i.e., collections in subareas) and each subtask can be 
assigned to a single sink. Multiple sinks can collect data from their areas simultaneously if they 
are not interfering with each other. This can increase the capacity and decrease the delay of data 
collection. We will derive the bounds of data collection for multiple sinks using the results in the 
case with a single sink. Because the delay rate and the capacity are always of the same order in 
both cases, we will not distinguish between them and instead use only the term of capacity. Two 
scenarios are considered in the following subsections: sinks are regularly deployed on a grid or 
randomly deployed in the field.

1.2.3.1 Regularly Deployed Multiple Sinks

When sinks are displayed regularly on a k k×  grid, the capacity of collection depends on the 
number of k sinks. Here, we divide the unit area into k subareas, which are 1 1

k k
×  squares. 

There are two cases: k n
n

<
+15 1 2( ) logα

 or k n
n

≥
+15 1 2( ) logα

.

Case 1: When k n
n

<
+15 1 2( ) logα

, k
R r

<
+
1

2( )
 because R = αr and r n

n
= 15 log . Thus, each 

subarea assigned to a sink is larger than or equal to (R + r)2. Therefore, we can perform the 
data collection in each subarea without interfering with the neighboring subareas. Because 
we have k subareas, the total delay rate and the total capacity of the whole area is at most 
k · Θ(W ) = Θ(kW ).

Case 2: When k n
n

≥
+15 1 2( ) logα

, k
R r

≥
+
1

2( )
. Thus, the area of each subarea is smaller 

than (R + r)2, which indicates that there will be interference between neighboring subareas. 

Therefore, the total delay rate or capacity is bounded by 1
2( )

( )
logR r

W n
n

W
+

⋅ = ⎛
⎝⎜

⎞
⎠⎟

Θ Θ  
from above, due to interference.

To achieve these upper bounds, the collection method for a single sink case can be used. When 

k n
n

<
+15 1 2( ) logα

, we partition the field into k subareas with the size of 1 1
k k

×  and every 

sink performs the collection method to collect their subareas. When k n
n

≥
+15 1 2( ) logα

, we par-

tition the field into 
1

2( )R r+
 subareas with a size of (R + r) × (R + r) as shown in Figure 1.6. Then, 

1
2( )R r+

 sinks can be selected to perform the collection method. Note that one selected sink may 

still cause interference with other selected sinks in an adjacent block. However, the number of such 
adjacent selected sinks is bounded by eight. Thus, a simple scheduling can avoid the interference 
and the capacity of data collection is still in the order of the theoretical bound. Figure 1.6 shows 
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a possible scheduling in which only one of nine selected sinks collects data from its surrounding 
blocks, and thus, we have our second theorem.

Theorem 2

Under the protocol model [22,23], the delay rate Γ and the capacity C of data collection in random 
sensor networks with k regularly deployed sinks are

 

Θ

Θ

( )
( ) log

,

log

kW k n
n

n
n

W k

when

when

<
+

⎛
⎝⎜

⎞
⎠⎟

≥

15 1 2α
nn

n15 1 2( ) log
.

α +

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

Because when k n
n

= ⎛
⎝⎜

⎞
⎠⎟

Θ
log

, the capacity (or delay rate) of two cases are all equal to 

Θ Θ( )
log

kW n
n

W= ⎛
⎝⎜

⎞
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. Therefore, the above equations can also be written as follows:

 

Θ

Θ Ω

( )
log

,

log

kW k n
n

n
n

W k n

when O

when

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
llog

.
n

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

Sink
Selected sink

Active sink

R + r

Figure 1.6 When k is large, we partition the field into 1
2( )R r+

 subareas. Each subarea selects 

one sink as its selected sink (shown as a gray triangle). Only one selected sink inside nine sub-
areas is active for data collection (shown as a black triangle). It will collect data from the sur-
rounding nine subareas using the single sink method. Notice that the adjacent nine subareas will 
not interfere with each other when applying the collection method.
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1.2.3.2 Randomly Deployed Multiple Sinks

Consider the scenario when k sinks are randomly distributed in the network. It is clear that if k is 
very large, the capacity is still bounded by the interference area. However, when the k is very small, 
the achievable capacity of collection may not reach the upper bound of Θ(kW ) because the distri-
bution of k sinks could be unbalanced in the field. In that case, even though the two neighboring 
sinks may not interfere with each other, they cannot fully operate over the whole period because 
some of them may finish their collection earlier and have no data to collect.

We first derive the upper bound of data collection capacity. Because the interference range is 

R r n
n

= = ⋅α α 15 log , we partition the whole area into interference blocks with a size of (R + r) × 

(R + r). Thus, there are B n
n

=
+15 1 2( ) logα

 interference blocks. We then consider three cases when 

we randomly put k sinks into B interference blocks:

Case 1: When k o n
n

= ⎛
⎝⎜

⎞
⎠⎟log

. For this case, the capacity of data collection is bounded by Θ(kW ) 

from above because the collection rate of each sink is bounded by W. Notice that data col-
lection with a single sink is a special case when k = 1.

Case 2: When k n
n

= ⎛
⎝⎜

⎞
⎠⎟

Θ
log

. We calculate the probability that an arbitrary interference block 

has at least one sink.

 

Pr (an interference block has at least one sink)) = − −
⎛
⎝⎜

⎞
⎠⎟

= − −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1 1 1 1 1 1

1

B n
n

k k

Θ
log

−− −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

1 1

Θ

Θ

n
n

n
n

log

log
.

 

  When n→∞, this probability is equal to 1 1−
e

. Let Pr be this probability. Then, we 

define the number of interference blocks occupied by at least one sink as a random vari-

able X. The expectation and variance of X are E X B
e

n
n

[ ]
log

= × = −⎛
⎝⎜

⎞
⎠⎟Pr 1 1

60 2α
 and 

σ
α

2
21 1 1 1

60
= × − × = −⎛

⎝⎜
⎞
⎠⎟Pr ( )

log
Pr B

e e
n

n
. Based on the Chebyshev inequality, we have 

the following:

 Pr X E X− ≥( ) ≤[ ] ςσ
ς
1
2 . 
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  Let ς α=
−⎛

⎝⎜
⎞
⎠⎟1

2

1 1
60
1

2e
n

n

e

log , we have

 Pr X E X E X e

e
n

n

− ≥⎛
⎝⎜

⎞
⎠⎟

≤
⋅

−⎛
⎝⎜

⎞
⎠⎟

[ ] [ ]

log

1
2

4 1

1 1
60 2α

, 

 which goes to 0 when n→∞. This means that 1
2

3
2

E X X E X[ ] [ ]≤ ≤  with a high probabil-

ity. In other words, the number of occupied interference blocks is Θ n
nlog

⎛
⎝⎜

⎞
⎠⎟

. Therefore, the 

capacity of data collection is bounded by Θ n
n

W
log

⎛
⎝⎜

⎞
⎠⎟

, which is also Θ(kW ).

Case 3: When k n
n

= ⎛
⎝⎜

⎞
⎠⎟

ω
log

. We also consider the probability that an arbitrary interference 

block has at least one sink.

 

Pr (an interference block has at least one sink) == − −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= − −
⎛
⎝⎜

⎞
⎠

1 1 1

1 1 1

Θ

Θ

n
n

n
n

k
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log ⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= − −

⎛
⎝⎜

⎞
⎠⎟

⋅
⎛
⎝⎜

⎞
⎠⎟

Θ
Θ

Θ

n
n

k
n

n

n

log
log

l

1 1 1

oog

log
log

l

n

n
n

n
n

n

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛
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⎠⎟

Ω
⎛
⎝⎜

⎞
⎠⎟Θ

Θ
oog n

⎛
⎝⎜

⎞
⎠⎟

  When n→∞, this probability goes to 1. In other words, every interference block has at 
least one sink with high probability. Thus, we can select only one sink in each block to col-

lect data at the same time. Then, the capacity of data collection is bounded by Θ n
n

W
log

⎛
⎝⎜

⎞
⎠⎟

 
from above.

  From the previous analysis, we find that the capacity upper bounds for the randomly dis-
tributed case are the same with the ones for the regularly distributed case. Next, we present 
the lower bounds of data collection capacity by giving our data collection methods.
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  When k O n
n

= ⎛
⎝⎜

⎞
⎠⎟log
, we first partition the network into interference blocks with the 

size 3 3log logk
k

k
k

× . From Lemma 1, we know that each of the blocks is occupied 

by at least one sink with a high probability. Because k O n
n

= ⎛
⎝⎜

⎞
⎠⎟log
, the size of a block 

is 3 logk
k

R r> + . Thus, we select one sink for each block, and use the same technique 

for grid-deployed sinks (Section 1.2.3.1) to schedule a subset of selected sinks to collect 

data from its surrounding area. The capacity achieved is Θ k
k

W
log

⎛
⎝⎜

⎞
⎠⎟

 because the number 

of selected sinks is Θ k
klog

⎛
⎝⎜

⎞
⎠⎟
. Notice that there is a gap between this lower bound and the 

upper bound Θ(kW ). This is due to the possibly uneven distribution of k sinks in this case, 
thus each sink may not have the same number of sensors (or areas) to perform the collection 
to achieve Θ(kW ) capacity in total.

  When k n
n

= ⎛
⎝⎜

⎞
⎠⎟

ω
log

, we first partition the network into interference blocks with size 

(R + r) × (R + r). As shown in Case 3, with high probability, each block has at least one sink. 

Using the same collection method, the achievable capacity is Θ n
n

W
log

⎛
⎝⎜

⎞
⎠⎟
, which meets the 

upper bound perfectly.

Theorem 3

Under the protocol model [22,23], the delay rate Γ and the capacity C of data collection in random 
sensor networks with k randomly deployed sinks are

 

Θ Θ

Θ

k
k

W C kW k n
n

C n

log
( )

log
,

lo

⎛
⎝⎜

⎞
⎠⎟

≤ ≤ =
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⎝⎜

⎞
⎠⎟

=

when O

gg log
.

n
W k n

n
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪

⎩

⎪
⎪ when ω

 

In summary, with multiple sinks (either grid or random deployment of k sinks), the capacity 
of data collection increases from that of the single sink case. When the capacity is constrained by 

the number of sinks i e. .,
log

k n
n

=
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
O , it is beneficial to add more sinks. However, when the 

capacity is constrained by the interference among sinks i.e., k n
n

=
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
ω

log
, adding more sinks 
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has no substantial capacity improvement. Similar observations were made by Liu et al. [17] for 
many-to-many capacity.

1.2.4 Data Collection under the Physical and Generalized Physical Models
Thus far, we only consider the protocol model, which is ideal but unrealistic in WSNs, in which 
the interference is modeled as a localized phenomenon. However, a receiver can be interfered with 
by a group of actively transmitting sensors even if its location is extremely far away from the group 
of sensors. Thus, we now consider more accurate models to reflect the influence of interference: the 
physical model and the generalized physical model. Please refer to Section 1.1.2 for their definitions.

Again, we consider a random sensor network with n sensor nodes and a single sink. We now 
use the random extended network model [28], in which all sensor nodes are uniformly deployed 
in a square region with side length l n= , by use of Poisson distribution with density 1. The grid 
partition method we introduced in Section 1.2.1 is the same except for the size length of every cell 
and the transmission range of each sensor are n  times larger than those in Section 1.2.1.

1.2.4.1 Data Collection under the Physical Model

For the case of data collection under the physical model, our collection scheme and analysis are 
almost the same with the one under the protocol model (Section 1.2.2). The only difference is that 
a new size of interference block is used.

We first divide the field into big blocks with size L × L as shown in Figure 1.7. We call these 
blocks interference blocks and L interference distance. Thus, the number of interference blocks is 
l
L

2

2
 
. We label each block with (i,j) where i and j are the indexes of the block as in Figure 1.7. In our 

collection scheme, we schedule data transmission in parallel at all blocks but make sure that there is 
only one sensor in each interference block transferring at any time. To avoid interference from send-
ers in other interference blocks, we need an interference distance L that is larger than a certain value.

id

L

(0,0)

3rd layer

1st layer

2nd layer

Figure 1.7 Grid partition of interference blocks with size of L × L and simultaneous transmis-
sions around the center block (0,0) by layers.
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Next, we derive the lower bound of interference distance such that all simultaneous transmis-
sions, as shown in Figure 1.7, can be successfully received. Here, we consider the SINR at the 
receiver in interference block (0,0), which is in the center of the field, because it has the minimum 
SINR among all receivers. Similar to the technique used by Franceschetti et al. [31], we now label 
all simultaneous transmissions by layers from block (0,0), as shown in Figure 1.7.

Based on the physical interference model, its SINR is at least

 
P r

N c P d
i

i i

⋅

+ ⋅

−

≥

−∑
β

β
0

1all layers
( )

. 

Here, di is the minimum distance from a transmitter on the ith layer to the receiver in block 
(0,0) and ci is the number of transmitters on the ith layer. Therefore, we need to derive L such that 
SINR ≥ η, that is,

 
all layers

( )
i

i ic d r N
P≥

−
−

∑ ≤ −
1

0β
β

η
. 

Notice that di ≥ iL − 2d and ci = 8i. For example, there are 8 transmitters at the first layer with 
distance at least L − 2d and 16 transmitters at the second layer with a distance of at least 2L − 2d, 
and so on. Thus,
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i i
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Because β > 2, ( )

i

i
≥

− −∑
1

1β  converges to a constant, let it be denoted by ϕ. Then, we only need

 8 2 0φ
η

β
β

( )L d r N
P

− ≤ −−
−

, 

to guarantee that the SINR at the receiver in the center is at least η. This can be satisfied by setting
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η
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, this makes sure we can find such suitable L. We can further 
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